Search results for "Front propagation"

showing 5 items of 5 documents

Front propagation in the one-dimensional autocatalyticA+B→2Areaction with decay

1999

We consider front propagation in the autocatalytic scheme $A+\stackrel{\ensuremath{\rightarrow}}{B}2A,$ where we also allow the A particles to decay, $\stackrel{\ensuremath{\rightarrow}}{A}0,$ with a constant decay rate $\ensuremath{\beta}.$ In a one dimensional, discrete, situation the A domain moves as a pulse, and its dynamics differs from what is found in higher dimensions. Thus the velocity of the pulse tends to a finite value when $\ensuremath{\beta}$ approaches from below the critical value ${\ensuremath{\beta}}_{c},$ at which pulses die out. On the other hand, when approaching ${\ensuremath{\beta}}_{c}$ from above, the mean lifetime of the pulse grows as $T\ensuremath{\propto}(\ensu…

AutocatalysisPhysicsFront propagationQuantum mechanicsA domainBeta (velocity)Atomic physicsCritical valuePhysical Review E
researchProduct

A Fisher–Kolmogorov equation with finite speed of propagation

2010

Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.

Entropy solutionsPartial differential equationDiffusion equationApplied MathematicsMathematical analysisFlux limited diffusion equationsReaction–diffusion equationsFront propagationReaction–diffusion systemFisher–Kolmogorov equationFokker–Planck equationUniquenessDiffusion (business)Convection–diffusion equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Experimental nonlinear electrical reaction-diffusion lattice

1998

International audience; A nonlinear electrical reaction-diffusion lattice modelling the Nagumo equation is presented. It is shown that this system supports front propagation with a given velocity. This propagation is observed experimentally using a video acquisition system, and the measured velocity of the front is in perfect agreement with the theoretical prediction.

Mechanics01 natural sciences010305 fluids & plasmasNonlinear systemFront propagation[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Control theoryLattice (order)0103 physical sciencesReaction–diffusion systemNonlinear network analysis[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Electrical and Electronic Engineering010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsMathematics
researchProduct

Kardar–Parisi–Zhang scaling in kinetic roughening of fire fronts

1999

Abstract We show that the roughening of fire fronts in slow combustion of paper [7] follows the scaling predictions of the Kardar–Parisi–Zhang equation with thermal noise. By improved experimental accuracy it is now possible to observe the short-time and short-range correlations of the interfaces. These do not adhere to any standard picture, and in particular, do not seem to be related to any of the existing models of front propagation in the presence of quenched disorder.

Statistics and ProbabilityPhysicsFront propagationCondensed Matter::Statistical MechanicsStatistical physicsCondensed Matter PhysicsKinetic energyCombustionCondensed Matter::Disordered Systems and Neural NetworksScalingPhysica A: Statistical Mechanics and its Applications
researchProduct

Propagation failure in discrete bistable reaction-diffusion systems: Theory and experiments

2001

International audience; Wave front propagation failure is investigated in discrete bistable reaction-diffusion systems. We present a theoretical approach including dissipative effects and leading to an analytical expression of the critical coupling beyond which front propagation can occur as a function of the nonlinearity threshold parameter. Our theoretical predictions are confirmed by numerical simulations and experimental results on an equivalent electrical diffusive lattice.

WavefrontPhysicsBistability01 natural sciences010305 fluids & plasmasNonlinear systemFront propagationSystems theory[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Lattice (order)0103 physical sciencesReaction–diffusion systemDissipative system[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Statistical physics010306 general physics
researchProduct